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A fundamental problem in modern thermodynamics is how a molecular-scale machine performs
useful work, while operating away from thermal equilibrium without excessive dissipation. To this
end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic
states. Within the linear-response regime, this metric structure controls the dissipation of finite-
time transformations, and bestows optimal protocols with many useful properties. We discuss the
connection to the existing thermodynamic length formalism, and demonstrate the utility of this
metric by solving for optimal control parameter protocols in a simple nonequilibrium model. [1]

PACS numbers: 05.70.Ln,05.40.-a,02.60.Cb,02.40.Ky

Introduction. Molecular machines are microscopic
objects that manipulate energy, matter, and information
on the nanometer scale. Naturally-occurring machines
are central to the performance of virtually any promi-
nent cellular process, and the design of synthetic ma-
chines holds out the promise for significant technologi-
cal advances. A major impediment to quantitative un-
derstanding of their thermodynamics is that molecular-
scale machines typically operate out of thermodynamic
equilibrium. For instance, the rotary FOF1-ATPase mo-
tor is powered by proton flow across a gradient produc-
ing a free energy difference of ∼200 meV per proton.
This free energy difference dwarfs the characteristic en-
ergy scale of thermal fluctuations under ambient condi-
tions, 1kBT ≈ 25 meV (where kB is Boltzmann’s con-
stant and the temperature is T ∼ 300 K), hence, the
proton flux drives the machine out of equilibrium. In
such contexts equilibrium statistical mechanics has lim-
ited applicability and a nonequilibrium understanding of
these machines is vital. Indeed, living processes with
their preparation and preservation of order must, by their
very nature, be out of equilibrium, leading Schrödinger
to equate death with “the decay into thermodynamical
equilibrium” [2].

A central figure of merit for both molecular and macro-
scopic machines is thermodynamic efficiency: their abil-
ity to exploit available energy from a source to perform
useful work, while minimizing dissipation of heat into the
surrounding environment. The importance of efficiency
engenders an interest in understanding the basic physi-
cal principles at play, the limits on efficiency in energy
conversion, and the characteristics of optimal machines.
In order to generate insights into biomolecular machine
efficiency, insights that are transferable to the design of
novel synthetic molecular machines, a general framework
is necessary, one that abstracts away from many of the
molecular details and instead focuses (at least initially)
on criteria for optimal nonequilibrium processes.

For macroscopic systems, the properties of optimal
processes have been investigated using thermodynamic
length, a natural measure of the distance between equi-

librium thermodynamic states [3]. Its original deriva-
tions, developed in the context of finite-time thermody-
namics, considered the metrics on equilibrium manifolds,
specifically the second derivatives of internal energy [3],
entropy [4], or free energy [5], all essentially equivalent in
the thermodynamic limit [6]. Central results were derived
under the assumption of endoreversibility [7], whereby
the system and environment are in thermal equilibrium,
though not necessarily equilibrated with each other. In a
system driven by changes in a single control parameter,
this amounts to the system trailing the environment, at
any instant residing in an equilibrium corresponding to
the system at a previous value of the control parameter.
From these foundations, the second derivatives of inter-
nal energy, free energy and entropy were shown to each
impose a Riemannian metric structure on the equilibrium
surface [7, 8].

Our aim is to adapt this framework to microscopic,
nanoscale processes rather than the macroscopic pro-
cesses for which it was originally formulated. Recent
extensions have developed a microscopic formulation of
thermodynamic length [9] with a metric tensor of Fisher
information [10] (equivalent for thermodynamic systems
to the equilibrium fluctuations of the conjugate force),
and showed how to experimentally measure this quan-
tity using work fluctuation relations [11]. In this pa-
per we show that a microscopic and generalized formu-
lation of thermodynamic length analysis can be derived
directly from linear-response theory, without recourse to
endoreversibility. The resulting thermodynamic metric
structure imbues optimal processes with several impor-
tant properties: optimal paths (those that minimize dis-
sipation) are geodesics [12], dissipation is inversely pro-
portional to protocol duration, the optimal control pa-
rameter path is independent of duration, and optimal
protocols perturb the control parameter so as to accu-
mulate excess work at a constant rate [7, 13].

Derivation. Linear response is a standard frame-
work for understanding fluctuations out of equilib-
rium [14]. Here we derive a generalized thermodynamic
length analysis from linear-response, without resort to
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the assumption of endoreversibility.
We assume a physical system in contact with a thermal

bath. The probability distribution over microstates x at
equilibrium is given by the canonical ensemble

π(x|λ) = expβ[F (λ)− E(x,λ)] , (1)

where β = 1/kBT is the inverse temperature T
of the environment in natural units, F (λ) ≡
−kBT ln

∑
x exp{−βE(x,λ)} is the free energy, and

E(x,λ) is the system energy as a function of the mi-
crostate x and a collection of experimentally controllable
parameters λ of the system. In the case of a gas confined
to a cylinder a control parameter could be the position
of the piston imposing a particular accessible volume.
For a single macromolecule stretched between two opti-
cal traps, the control parameter could be the distance
between the traps, imposing a harmonic energetic bias
on the separation of the optical beads, between which
the macromolecule is stretched. Control parameters can
also represent collective variables, order parameters, or
reaction coordinates.

In equilibrium, the macroscopic state of the system
(the probability distribution over microstates) is com-
pletely specified by values of the control parameters, but
out of equilibrium the system’s probability distribution
over microstates fundamentally depends on the history
of the control parameter λ, which we denote by the con-
trol parameter protocol Λ. We assume the protocol is
sufficiently smooth to be twice time-differentiable.

As formulated this driving by a time-dependent Hamil-
tonian can model a nonequilibrium steady state in the
rest frame of a constantly-translating potential [15] or
a driven damped harmonic oscillator that settles into a
limit cycle. However it cannot treat a steady state, de-
fined by time-independent probabilities for all system mi-
crostates in the lab reference frame. Such a steady state,
for example induced by planar shear, is more naturally
modeled by including a nonconservative force and corre-
sponding dissipative flux [16].

We adopt natural definitions of heat and work [17, 18]:
In accordance with the first law the average instanta-
neous rate of energy flow into the system, d〈E〉Λ/dt, is
the sum of the average instantaneous rate of heat flow Q
from the environment into the system,

d〈Q〉Λ
dt

≡
〈
dxT

dt
· ∂E
∂x

〉
Λ

, (2)

and the average instantaneous power P (rate of workW)
due to the external perturbation of the control parame-
ters λ,

P ≡ d〈W〉Λ
dt

≡ −dλ
T

dt
· 〈X〉Λ . (3)

Here X ≡ −∂E/∂λ is the vector of forces conjugate to
the control parameters λ, and angular brackets with sub-

script Λ denote a nonequilibrium average over the ensem-
ble following the control parameter protocol Λ. For the
macromolecule with the trap position as the control pa-
rameter, the corresponding conjugate force would be the
tension with which extension is resisted by the entire con-
struct of a macromolecule, attached handles, and optical
beads [11].

For a system initially at equilibrium at time t0 and
control parameters λ(t0), the average heat flow vanishes,
and the average power is

P(t0) = −
[
dλT

dt

]
t0

· 〈X〉λ(t0) , (4)

where the angled brackets with subscript λ(t0) denote an
ensemble average at fixed control parameters λ(t0).

Thus for a system at time t0, following an arbitrary
nonequilibrium protocol Λ with current control parame-
ter values λ(t0), the average excess power exerted by the
external agent on the system, over and above the average
power on a system initially at equilibrium, is

Pex(t0) = −
[
dλT

dt

]
t0

· 〈∆X(t0)〉Λ , (5)

where ∆X(t0) ≡ X(t0)− 〈X〉λ(t0) is the deviation of the
conjugate forces X at time t0 from the average conjugate
forces X at equilibrium under control parameter λ(t0).

To first order in the magnitude of the external per-
turbation, dynamic linear-response theory expresses the
deviation of the conjugate forces from equilibrium as an
integrated response to the perturbation [19],

〈∆X(t0)〉Λ '
∫ t0

−∞
dt′ χ(t0 − t′) · [λ(t′)− λ(t0)] , (6)

where χij(t) ≡ β dΣ
(λ(t0))
ij (t)/dt represents the response

of conjugate force Xj at time t to a perturbation in con-
trol parameter λi at time zero, and

Σ
(λ(t0))
ij (t) ≡ 〈δXj(0) δXi(t)〉λ(t0) (7)

is the coefficient of the covariance matrix Σ(λ(t0))(t) for
conjugate forces Xj and Xi separated by time t, at con-
stant control parameters λ(t0). This approximation as-
sumes that, over timescales where the response function
dΣ(λ(t0))(t)/dt

∣∣
τ

is significantly different from zero, both
the nonequilibrium response 〈∆X(t0)〉Λ and the equilib-
rium change 〈X〉λ(t0)−〈X〉λ(t0−τ) are linear in the control
parameter change λ(t0)− λ(t0 − τ).

Substituting Eq. (6) into Eq. (5) simplifies the nonequi-
librium expectation:

Pex(t0) = β

[
dλT

dt

]
t0

(8)

·
∫ t0

−∞
dt′
dΣ(λ(t0))(t0 − t′)

dt′
· [λ(t0)− λ(t′)] .
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Integration by parts gives

Pex(t0) = β

[
dλT

dt

]
t0

·
∫ t0

−∞
dt′Σ(λ(t0))(t0 − t′) ·

[
dλ

dt

]
t′
,

(9)
where the boundary term at t′ = t0 vanishes triv-
ially, and the one at t′ = −∞ vanishes given that
limt′→−∞Σ(λ(t0))(t0 − t′) · λ(t′) = 0. This is satisfied,
for example, when the system is initially at equilibrium.

We change integration variables to t′′ ≡ t0 − t′ and
Taylor expand the control parameter velocities at time
t0 − t′′ around their values at t0,[

dλ

dt

]
t0−t′′

=

[
dλ

dt

]
t0

− O

([
d2λ

dt2

]
t0

)
. (10)

When the control parameter velocities change on
timescales slower than the relaxation time of the system’s
force fluctuations, we can keep only the constant term,
yielding

Pex(t0) =

[
dλT

dt

]
t0

·β
∫ ∞

0

dt′′Σ(λ(t0))(t′′) ·
[
dλ

dt

]
t0

. (11)

This analysis collapses the integral of the time-
dependent covariance matrix into a single time-
independent (equilibrium) matrix ζ

(
λ(t0)

)
with entries

ζij

(
λ(t0)

)
= β

∫ ∞
0

dt′′Σ
(λ(t0))
ij (t′′) (12a)

= β

∫ ∞
0

dt′′ 〈δXj(0) δXi(t
′′)〉λ(t0) . (12b)

This time-integrated force covariance matrix is the Kirk-
wood formulation of the friction tensor [20, 21].

We arrive at our central relations. The nonequilibrium
excess power Pex along the protocol is determined by the
friction tensor and experimentally controlled parameter
velocities,

Pex(t0) =

[
dλT

dt

]
t0

· ζ
(
λ(t0)

)
·
[
dλ

dt

]
t0

. (13)

This expression is entirely local: although in general
nonequilibrium properties depend on the perturbation
history, our relation only depends on the instantaneous
values of the control parameter and its derivative.

The integral of the excess power over the con-
trol parameter protocol gives the mean excess work,

Wex =
∫∆t

0
dtPex(t). This is the difference between

the work the external agent does on the system dur-
ing the nonequilibrium protocol and the work that would
have been done if the protocol had been performed qua-
sistatically, so that the system remained at equilibrium
throughout. It follows from Eq. (13) that the excess
power scales as |dλ/dt|2 and, for a given total transition
time ∆t, the excess work scales as |dλ/dt|.

In general, at the conclusion of the protocol some frac-
tion of this excess work will have been dissipated as heat
to the environment, and the remaining fraction remains
in the system, as an excess energy associated with being
instantaneously out of equilibrium [22]. If at the conclu-
sion of the protocol the system is allowed to fully equi-
librate, all this remaining energy will be dissipated, and
thus the excess work will equal the dissipation.

Any covariance matrix is symmetric and positive-
semidefinite [23], and the conjugate-force covariance ma-
trix Σ(λ(t0))(t) varies smoothly with control parameter
values (except at macroscopic phase transitions). It fol-
lows that the friction tensor ζ

(
λ(t0)

)
, the time-integral

of Σ(λ(t0))(t), is symmetric, positive-semidefinite, and
smoothly varying except at macroscopic phase transi-
tions. Therefore the friction tensor ζ induces a Rieman-
nian manifold on the space of thermodynamic states [24].
Furthermore, positive-semidefiniteness of the friction ten-
sor ζ guarantees that excess power and work are non-
negative, consistent with the second law.

This metric endows protocols with a number of use-
ful properties. It defines a generalized thermody-

namic length, L =
∫∆t

0
dt
√
Pex(t) and divergence J =

∆t
∫∆t

0
dtPex(t). The excess work is proportional to

the thermodynamic divergence along the protocol, J =
∆t Wex. For a fixed control parameter path, the cor-
responding thermodynamic length is independent of the
time interval ∆t and the relative control parameter ve-
locities en route, and places a lower bound on the excess
work, Wex ≥ L2/∆t. By the Cauchy-Schwarz inequal-
ity, this bound is only realized for a protocol with a con-
stant excess power [7, 9].

Under a Riemannian metric the shortest paths (and
therefore in our case the optimal, minimum excess work
protocols) are geodesics, the closest thing to a straight
line in a curved manifold. This property should simplify
the discovery of optimal protocols in complicated energy
landscapes. Moreover, from the definition and scaling of
the thermodynamic length and divergence, it follows that
the control parameter path of an optimal protocol is inde-
pendent of the protocol duration. Increasing or decreas-
ing the duration does not change the optimal path in the
linear-response regime. Finally, we note that the metric
structure ensures that the excess work will be invariant
to linear transformations of the control parameters.

Discussion. The present formalism generalizes sev-
eral other frameworks in the existing literature on ther-
modynamic length. The control parameter friction tensor
can be decomposed into

ζ
(
λ(t0)

)
= kBT τ

(
λ(t0)

)
◦ I
(
λ(t0)

)
, (14)

the Hadamard product (entry-by-entry product) ‘◦’ of
the integral relaxation time matrix τ and the Fisher in-
formation matrix I, scaled by kBT . The Fisher informa-
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tion is defined as [25]:

Iij(λ) ≡
〈
∂ lnπ(x|λ)

∂λi
∂ lnπ(x|λ)

∂λj

〉
λ

. (15)

For a system in thermal equilibrium (1), this simplifies to
β2 〈δXj δXi〉λ, the covariance of the forces conjugate to
control parameters λi and λj [9]. The integral relaxation
time [26],

τij (λ) ≡
∫ ∞

0

dt′′
〈δXj(0) δXi(t

′′)〉λ
〈δXj δXi〉λ

, (16)

generalizes to multiple dimensions and nonexponential
relaxation kinetics the more familiar relaxation time
τ (0) (the time constant in exponential relaxation ki-
netics where correlations decay over time according to
exp[−t/τ (0)]).

Equation (13) allows for an integral relaxation time
that varies with the current control parameter value.
When the relaxation time does not vary with the control
parameter, the Riemannian metric reduces to the Fisher
information metric [27], recovering the microscopic ther-
modynamic length formulation of [9]. Nevertheless, the
generalization to varying integral relaxation time is im-
portant, as in many systems we expect the relaxation
time to vary substantially, especially near transition in-
terfaces separating metastable basins of attraction.

In general the Fisher information is related to Schlögl’s
metric, the second derivative of the free entropy ψ ≡
−βF , by I(λ) = −∂

2βF
∂λ2 +

〈
∂2βE
∂λ2

〉
. The last term van-

ishes when the energy is linear in the control parameters,
when the control parameters are intensive, or when the
control parameters are extensive in the macroscopic limit.
In these limits, we recover the original formalism as the
differential geometry of thermodynamic potentials [3–6].

Expressing the metric in terms of a friction tensor in
thermodynamic state space helps clarify the nature of
thermodynamic length. Roughly speaking, this friction
represents the resistance of the system to control param-
eter changes that are imposed in finite time. According
to Eq. (13), for a fixed control parameter velocity dλ/dt,
the excess power is greater where the control parameter
friction coefficient ζ is greater. Hence the excess work
is reduced when the protocol proceeds slower in regions
of a high friction coefficient, which can occur when the
relaxation time or equilibrium fluctuations are large.

In Cartesian space, the friction tensor (also known as
the inverse diffusion tensor) has been posited as a metric
tensor [28–30], and used to understand the connectivity
of white matter in the brain [31] and the paths of elec-
trical excitation waves in cardiac tissue [32]. de Koning
and Antonelli [33] derived a similar expression for excess
work (but assumed simple exponential relaxation time)
using similar linear-response arguments. Tsao, et al. [34]
derived a similar expression assuming endoreversibility

(but with the integral relaxation time replaced by the en-
doreversible lag time, the elapsed time since the control
parameters had values for which the current distribution
over microstates is an equilibrium distribution). The case
of nonexponential kinetics, the connections to thermody-
namic length analysis, and the interpretation in terms of
a friction tensor in thermodynamic state space have not
to our knowledge been previously reported.

Applications. We now demonstrate a simple ex-
pression for the control parameter protocol that mini-
mizes the excess work for a system with one control pa-
rameter, given that it must transition between points λa
and λb in fixed time ∆t. The optimal control parameter
protocol is found via the Euler-Lagrange equation [35]
for this problem, with cost function f(λ(t), λ̇) = ζ(λ) λ̇2,

0 =
∂f

∂λ
− d

dt

[
∂f

∂λ̇

]
= −2ζ(λ) λ̈− ζ ′(λ) λ̇2 . (17)

This has the solution

λ̇opt(t) =
(λb − λa) ζ

(
λ(t)

)− 1
2∫∆t

0
dt′ ζ

(
λ(t′)

)− 1
2

∝ ζ
(
λ(t)

)− 1
2 . (18)

Thus, in the single control parameter case, the optimal
protocol proceeds with a velocity inversely proportional
to the square root of the control parameter friction, eval-
uated for the current value of the control parameter,
and hence [using Eq. (13)] has a constant excess power.
Where the system experiences large friction in thermody-
namic state space, the optimal control parameter proto-
col will change slowly. The time interval ∆t only sets the
proportionality constant, but not the relative velocities
at different points in the protocol.

The general multiple-parameter case does not admit
of a straightforward optimization. But we can extend
our analysis to the optimization of a particular two-
parameter protocol: a particle diffusing in a harmonic
potential according to the overdamped Langevin equa-
tion with Cartesian friction coefficient ζc, with control
parameters the location y and spring constant k of the
harmonic potential. We perturb the system from

(
ya, ka

)
to
(
yb, kb

)
in a fixed time interval ∆t. The control pa-

rameter friction tensor is

ζ =

(
ζc 0

0 ζc

4βk3

)
. (19)

Since this matrix is diagonal, and the k, k term is in-
dependent of y and the y, y term is independent of k,
the protocol can be optimized for each control param-
eter separately using Eq. (18), yielding for the optimal
protocol

d

dt
y =

yb − ya
∆t

,
d

dt
k−1/2 =

k
−1/2
b − k−1/2

a

∆t
. (20)
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Under the optimal protocol the trap center and inverse
square root of the spring constant each change at a con-
stant rate, independent of time. This corresponds to
changing the equilibrium mean and standard deviation
of position at a constant rate.

Seifert and coworkers elegantly derived the exact opti-
mal protocols for perturbing the position and spring con-
stant separately, for both over-damped [36] and under-
damped [37] Langevin dynamics. Their analysis found
optimal protocols similar to ours but with discrete con-
trol parameter jumps at the beginning and end of the
protocol (though these jumps are smoothed to bound-
ary layers under regularization that penalizes accelera-
tion [38]). Our method misses such protocol jumps be-
cause our derivation assumes that the velocities of proto-
cols change smoothly. Other than the discrete jumps at
the boundaries, our approximation produces results that
near equilibrium differ from optimal values by, to leading
order, a dimensionless measure of distance from equilib-
rium, ζc/(k∆t). Such exact results are useful where they
are tractable, but the thermodynamic metric provides a
convenient, general computational framework, especially
in complex systems.
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